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DETECTION IN A NON-GAUSSIAN ZNVIRONMENT

by

Stuart C. Schwartz and John B. Thomas

5 Department of Electrical Engineering

and Computer Science

Princeton University

Princeton, New Jersey 08544

ABSTRACT

Techniques for the detection of a weak signal in non-Gaussian, ill-defined

noise are considered. Statistical characterizations used are moments, tail

measures related to quantiles. and a measure related to the score function. For

multivariate densities, the characterization is by means of a nonlinear transfor-

mation. Initial results seem to indicate that assuming a particular family of pro-

bability densities does not necessarily result in a significant degradation in per-

formance when the observations actually come from a density outside the

assumed family. More important to performance are accurate estimates of the

114 moments, tail measures, or other parameters which are used to specify the ,

detector.

INTRODUCTION

In most engineering studies, there is usually a tradeoff between model com-

plexity and analytical tractability: the more complicated (and realistic) the

model is assumed to be, the more difficult the subsequent analysis becomes.

This balance is especially delicate in the area of non-Gaussian signal processing.

•I
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If departures from Gaussian statistics are investigated, it is usually assumed

that the sequence of observations is independent and, often, identically distri-

buted. With these basic assumptions, analytical results are often available. When

non-Gaussian dependencies are taken into account, results are often only

obtainable by means of Monte Carlo simulation since multivariate distributions

are usually not available in analytical form.

It is within this framework that we summarize some of our preliminary

results for detection in a non-Gaussian environment. We first consider the detec-

tion of a signal in nearly Gaussian skewed noise. Surprisingly, a small degree of

skewness can lead to a significant degradation in performance of the linear

detector as measured by false-alarm rate. A detector which exhibits the desired

robustness is introduced. Some of the potential difficulties in using adaptive

procedures are illustrated in the context of under-ice ambient noise data.

A general adaptive procedure is then outlined which uses the skewness-

kurtosis plane to measure departures from Gaussian statistics. Overlays, which

"* specify the probability density family of the observations, are introduced and

used to determine the form of the nonlinear processor.

Non-Gaussian statistics are then characterized by the derivative of the loga-

rithm of the probability density. This expression, f'(x)/f(x). is estimated using

a9 the observations and is then used to form an optimum detector. It is shown by

example that, under reasonable conditions, assuming a particular family of pro-

babilty densities does not significantly degrade detector performance when the

observations actually come from a density outside the family. This general con- -

clusion is also arrived at using another approach, in which quantiles are used to

measure the tail behavior of heamy-tailed probability densities.

In the last section, a class of multivariate non-Gaussian probability densi-

ties is defined. For this class, the locally optimum detector is seen to separate

. . . ,'
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into a zero-memory nonlinear part and a part with memory. The results of a

simulation to evaluate a number of detectors are presented. It is observed that

simplified versions of the optimal processor also lead to improved performance

when compared to conventional detectors.

DETECTION IN SKEWED NOISE

In robust and general nonparametric studies (Refs. 1,2), a symmetry

assumption on the underlying noise density is usually made. (Another frequent

nonparametric assumption is that the noise density is unimodal or that the

median is 1/2.) In this section, we report on an investigation which assumes

nonzero skewness and which studies the sensitivity of the linear and sign detec-

tors to this lack of symmetry. Surprisingly, a small amount of skewness can

lead to marked deterloration in system performance for the linear detector as

measured by false-alarm rate. A modified detector is also introduced which

exhibits a desired robustness to skewness in the observations.

Consider the detection problem

Ho: X: N, , 1:I2....k

iHI: X: 0 + NP
where the constant signal 0>0. The noise is independentidentically distributed

with first three moments

E(Xt)=O, E(4!)=oa, E(X =)=> 0
The skewness is defined as

M: os

and is assumed to be small.

If skewness were zero and the noise Gaussian, the optimum receiver is the

sample mean or linear detector

';2.1
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With a small amount of skewness and nearly Gaussian noise, the test statistic T

can be represented by the first few terms of the Cornish-Fisher expansion

(Refs.3,4). Under hypothesis H0

T(z)j-Z + 143 -(Zg-l)+0(k-3/2)

where Z is the standard normal variable. (Under hypothesis H, the above

expression includes a shift by the signal.)

Utilizing the first two terms of this expansion, one can generate the proba-

71".L bility density function for T2. along with analytic expressions for the false-alarm

rate and detectability. Details can be found in [3],[4].

Figure 1 compares the Gaussian density to the density of Ts with skewness

=0.5. Figure Z gives the normalized false-alarm rate as a function of skewness.

The number of observations for the test is 100. The constant is the false-

alarm rate under the strict Gaussian assumption (t=O) and provides the thres-

hold setting for Ts. A slight departure from symmetry is hardly discernible

(Fig. 1). Yet, for C=0.5, there is an increase in false-alarm rate of over 80 for a

nominal o=10 " . With smaller ao, the degradation is even more severe (Ref. 4).

Clearly, the linear detector can be modified so as to account for skewness.

One approach Is to use a nonparametric test such as the sign detector, which

keeps the false alarm rate relatively constant. (See Ref. 3 for details.) A second .

approach is to directly modify the linear detector. Here, a natural way to

proceed would be to "subtract off' that part of the observation due to skewness.

The following test statistic is the simplest version of this approach:

T (z) = TI(z) - -- (T,(z))s

where 7'T is the sample mean detector given above. Analytic expressions can

again be developed for false alarm-rate and power (Ref,4). Here, we choose to

present the results of a Monte Carlo simulation which also serves to verify the

. .............' .... . . ..-" .. ---- ; . .. '- ..-- " .". - - ". .- "'". . -.
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accuracy of the analytic approximations. The results for false-alarm rates in

Fig. 3 indicates that the modified sample mean detector has the desired robust-

ess. A
Implicit in the improved performance is the ability to measure the skew-

ness accurately. This is clearly illustrated with a simple experiment performed

with under-ice ambient noise. Fram 11 data (Ref.5 and also discussed elsewhere

- . in these Proceedings) was used to compute empirically the false-alarm rate for

the linear detector and the modified version discussed above. Required esti-

mates of the variance and skewness were obtained by straightforward sample

moment methods over (assumed stationary) blocks of data. Fgure 4 summar-

izes the results of our first experiment. Performance of both detectors is essen-

tially the same, in sharp contrast to the results obtained from computer-

generated data discussed in the above paragraph. The primary reason for this

is, we suspect, related to the nature of the nonstationarity of the data (See Ref.

5, page 8 and Fig. 5 below) and the need to use more accurate estimates of

skewness with better tracking properties. This aspect of data-adaptive estima-

tion and detection is an area of current research activity.

To conclude this section, we will outline one possible adaptive system which

uses sample moments. Computed skewness and kurtosis are shown versus time

* for a representative Fram I data set in Figs. 5,6. (See Ref, 7 for further details.)

Kurtosis is defined as the normalized fourth central moment:

Figure 7 presents the same skewness (#I) versus kurtosis (Pu). with time an -

implicit parameter. Observe the cluster of points around Pj=0,PL=3, which are

the values for a Gaussian density. The overlaid lines are different regions of the

Johnson family of densities. (The Johnson family can be defined as a nonlinear

transformation of Gaussian variates. The symbol S,. for example, represents

K o
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the sinh transformation, while S is a logarithmic transformation, leading to a

lognormal random variable. (See Ref. 6, section 2.2 for further details.)

Each point in the skewness-kurtosis plane defines a unique member of the

* Johnson family. This' one-to-one relationship can be utilized in a data-adaptive

detector in the following manner. A region around the Gaussian point

(Pi=OPi3) can be defined. For points lying in this region, it is assumed that

the observations are governed by Gaussian statistics and the optimum processor

is the linear detector. When the computed moments fall outside the region. one

declares that the observations are non-Gaussian and another detector is

switched in to process the data. The point in the p-P2 plane would determine

the appropriate density which then specifies the likelihood processor (locally

optimum detector in the weak signal case.) In practice, the PI-,o plane would

be quantized into, sak, rectangular regions. Then, either due to nonstationary

statistics or because of sampling variances of the moment or other estimators,

the point wanders around in the region. When it leaves one region, another likel-

ihood (nonlinear) processor can be be switched in. Clearly, there are two key

steps. The first is to obtain good tracking estimates. The second is to specify

which family of probability densities to overlay on the -Pu plane, e.g., the

Johnson, Pearson, or mixture model. This point will be discussed in more detail

in the next section.

DENSITY FAMIIES AND ADAPTIVE DETECTION

Rather than focus on a particular moment measure such as skewness or

kurtosis to charcterize non-Gaussian statistics, one can attempt to generalize,

but still parameterize, the problem in the following manner.

The score function of the density f(x) is related to f'(x)/f(x) and plays an

i° '-
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.1 important role in estimation theory [8]. In addition. -f'(x)/f(x) determines the

form of the processor for the locally most powerful test or the detection of a

weak signal in noise. (This expression is also related to the test which maxim-

izes efficacy in the small signal case.) .-.

These observations lead us to focus on using f'/f as a characterization of

non-Gaussian statistics. Observe that for the Gaussian density f/f is linear, so

departures from Gaussian statistics can be conveniently measured by depar-

tures from linearity. A straightforward way to proceed is to specify f'/f as a

ratio of two polynomials, Specializing to first-order numerator and second-order

denominator polynomials gives the classical Pearson family of probability densi-

ties:

: bo+b Ix+baz

which includes the Gaussian. gamma, and beta among its members.

The procedure would now be to use the observations to estimate the above

coefficients. This determines the particular density of the Pearson family and

the corresponding detector. The two main approaches for estimating the

coefficients are maximum likelihood estimates of the paramters directly, and

indirect estimates using sample moments.

Of immediate interest is the question: what happens when there is a

mismatch. i.e., when we use data generated by a non-Pearson density to fit a

Pearson-type detector as described above? We proceed, using the non-Pearson

mixture model ([7]):

,- W() (1=e) a-'"120 + ,a- -- 1

The ratio of the component variances is defined to be

This mixture density has been used to model heavy-tailed impulsive noise. (See

-. . . -,.....',...- ...-.. ,.. , _...... i.. .. :.-.- i. ,. . .. . _i , ,, .. .......- + - - .. +
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Ref. 9 and the references cited therein.)

For the results that follow, the first four moments of the mixture model are

used to obtain analytically the parameters a .6 0,6 1,6 2. This then determines the

processor, in this case the locally optimum detector. Figure 8 shows the curve

g(x)=-f'(x)/f(x) which is the zero-memory nonlinear part of the locally optimum

detector. This is for a symmetric density (a=b1 =0), with kurtosis shown as a

parameter. Figures 9a-9d present a comparison of ARE, as a function of the

mixing constant c, with y as a parameter. (The ARE, asymptotic relative

efficiency, is the ratio of efficacies. Efficacies. in turn, are incremental signal-

to-noise ratio measures in the small signal case.) ARE(10 ,Ld) is the ratio of the

locally optimum to the linear detector, while ARE(ILd) compares the Pearson

fit as discussed above to the linear detector. It is seen that for small c and y,

the Pearson-fit detector compares quite favorably to the locally optimum, even

though -(z) was determined from a non-Pearson density. (Additional details

and further examples can be found in Ref. 7.)

Based on these preliminary computions, it would appear that, for nearly

Gaussian noise (a mixing parameter of r <0.1), the assumption of operating

within a Pearson family does not significantly degrade detector performance

when the true density turns out to be a Gaussian mixture with a Laplace contain-

inant.

One of the difficulties with moment estimators is the potentially large sam-

piing variance for the higher-order moments. Oftentimes, it is more appropriate

to use quantile measures to characterize the underlying statistics. We now out-

line a study using these measures. (See Refs. 10 and 11 for details.)

Let F(x) be the cumulative distribution function for the noise. Let p,

represent a quantile on the tail of the density, e.g., pl=.999. and let pgp be a

lower quantile. Then, two other measures which can be used to characterize the

re
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density (and its tails) are:

=F 1 (p 1 )/F- (P2)

and

p =d- -In F-I(p 1)-
d

Figure 10 ilustrates the one-to-one relationship between these measures (and

kurtosis) and the Johnson S, family as one of the two parameters 6 of this den-

sity varies. The other parameter is determined from the variance (measured or

given) and 6. (See [10] or [ii], Chapt. 4.)

Using these measures, one can parallel the adaptive procedure outlined

above. That is, the data is used to estimate 6. This, in combination with an esti-

mate of a, uniquely determines the Johnson probability density and, hence, the

nonlinear detector. This has been simulated when the noise does not actually

come from a Johnson density but, rather, from other heavy-tailed densities

(Gaussian-Gaussian mixtures, Lapacian noise). The results of a preliminary corn-

:.- puter simulation are encouraging: the detector based on Johnson statistics per-

forms close to the optimum detector (which is based on exact knowledge of the

noise statistics) and always better than the linear detector ([11]). Again we see

, that detector performance does not appear to be critically dependent on speci-

fying the correct family of densities. More important, apparently, are accurate

*t estimates of the parameters which characterize the family and the correspond-

ing detector

DETECTION IN MULTIVARIATE NOISE

The previous discussion assumed the observations were independent; in

order to account for the dependencies, multivariate probability densities need

to be considered. In this section, we study nonlinear transformations of a known

multivariate density. This type of noise, called transformation noise in Rets. 7

.q . .. . . - " , .. . , , . . , _ .,_, ,= , . ., ,, = ..... .,. ~ m . m .
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and 12, is a multivariate generalization of the Johnson family discussed earlier.

Any output marginal can be obtained by prescrib'ng a zero-memory nonlinear

transformation. It is difficult, however, to obtain analytically the output depen-

dencies. Figure 11 is a schematic of the transformation noise generation. The

output multivariate density is denoted by j' (a) and the input density by go(.).

With .4 multivariate Gaussian. there is a further decomposition, since one can

easily define the linear transformation.=Lz., where x is a vector of independent

Gaussian variates, andIL defines the covariance structure.

For the case of a weak signal in noise, the appropriate receiver is the locally

optimum detector. It is shown in Fig.12, where it is assumed that the nonlinear-

ity g is twice differentiable. The symbol S denotes element-by-element vector

multiplication and @ is the vector dot product. Observe that the detector con-

sists of a zero-memory nonlinear part (gg', etc...) and the locally optimal non-

linearity with memory, Vr/p , for a signal in noise with a density S. With a mul-

tivariate Gaussian, Vq/ 9 reduces to the usual linear matched filter, R-.'

Figure 13 summarizes the results of a Monte Carlo simulation to evaluate

ARE. (See [71,[12] for details.) The output marginal was specified as Laplacian:

f (n') =-ezp (-a In)

which was generated by a suitable transformation of multivariate Gaussian

noise. The Gaussian vector was assumed to be m-dependent, with the correla-

tion function taken as triangular:

A' = -!/ , i1!

pi =0, ji I > m
The nonlinearities required in the detector are determined from f 1(n). and the

signal was taken as a constant.

Four detectors were simulated. The first was the locally optimum detector,

and the second assumed independent noise. The third was a simplification of
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the first; the indicated vector multiplication was removed. The fourth detector

was the linear matched filter. As indicated above, values for the ARE were com-

puted via simulation; consequently, it is difficult to make general statements.

Nevertheless, some observations seem appropriate.

It is clear that for small correlation time, n 3 or 4. an independence

assumption does not significantly degrade detector performance. Second, with

some sort of nonlinear processing, i.e., taking into account non-Gaussian statis-

tics, a reasonable improvement can usually be obtained: for any of the nonlinear

detectors compared to the linear one, the ARE for this simulation does not fall

below 2. Note that detectors 2 and 3 give similar ARE values. This is interesting

since one detector assumes independent noise, while the other simplfles the

optimal detector, but keeps the dependency assumption. Clearly, one would like

to learn what are the essential common features of the various detectors that

lead to improved performance. Then. only these features need be incorporated --

into a practical receiver.

SUMMARY

Techniques for detection of weak signals in non-Gaussian noise have been

considered. The importance of both learning and robust procedures was illus-

trated by means of an example where a modest deviation from a Gaussian noise

assumption (in skewness) led to a substantial increase in the false alarm rate for

a lnear detector. In contrast, a modified (non-linear) detector was robust and

maintained a relatively constant false alarm rate for a wide range of skewness.

These analytical results were verified by computer simulation.

Under-ice ambient noise was used in an experiment to illustrate some of

the practical difficulties with adaptive procedures; in this case, because of the

non-stationarity of the noise, there was a need to incorporate into the adaptive
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detector parameter estimates with enhanced tracking properties.

The skewness-kurtosis plane was presented as a convenient graphical

display to place in evidence the time-varying nature of the non-Gaussian statis-

tics. The notion of overlays was also introduced to define density families and -

the corresponding likelihood processors. Densities were also characterized in

terms of a function related to the score function and tail measures using quan-

tiles. Our preliminary results seem to indicate that detector performance does

not appear to be critically dependent on specifying the correct family of densi-

ties. More important to performance are accurate estimates of the moments,

tail measures, or other parameters which are'used to specify the detector.

A particular class of multivariate non-Gaussian densities was defined and

the canonical form of the locally optimum detector derived. The results of a

simulation to evaluaie ARE for the optimum detector and simplified versions

were presented. These results indicate that some sort of nonlinear processing

which takes into account deviations from Gaussian statistics leads to a large

portion of the improved performance.
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